Code: EE4T1

II B.Tech - II Semester – Regular/Supplementary Examinations – April 2019

COMPLEX VARIABLES & SPECIAL FUNCTIONS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks $11 \ge 22 \text{ M}$

1.

a) Find the real and imaginary parts of Cosh (x+iy).

b) Find all the roots of the equation: Sinz = Cosh4.

c) List the C-R equations in polar co-ordinates.

d) State Cauchy's integral formula.

e) Define Complex potential Function.

f) Determine the poles of the function $f(z) = \frac{1 - e^{2z}}{z^4}$.

g) Find the poles and residues at each pole of tanhz?

h) Find the image of the infinite strip $0 < y < \frac{1}{2}$ under

the transformation $w = \frac{1}{z}$.

i) Find the bilinear transformation which maps the points (-1,0,1) into the points (0,i,3i)

j) Determine $\frac{d}{dx} J_0(x)$.

k) Express the function in Legendre polynomial $5x^3+x$

Page 1 of 3

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

2. a) Show that the function $f(x,y)=x^3y-xy^3+xy+x+y$ can be imaginary part of an analytic function z = x + i y.

8 M

- b) Find f(z) = u + iv given that $u + v = \frac{Sin2x}{\cosh 2y \cos 2x}$. 8 M
- 3. a) Evaluate $\int_{c} (x-2y)dx + (y^2 x^2)dy$ Where C is the boundary of the first quadrant of the Circle $x^2 + y^2 = 4$. 8 M
 - b) Develop $f(z) = \frac{1+2z}{z^2+z^3}$ in a series of positive and negative powers of z. 8 M

4. a) Evaluate
$$\int_c \frac{\sin^6 z}{\left(z - \frac{\pi}{6}\right)^3} dz$$
 where C: $|z| = 1$. 8 M

b) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{(5-\cos\theta)^2}$$
 using residue theorem. 8 M

5. a) Show that circles are invariant under linear and inversion transformations. 8 M

Page 2 of 3

b) Find the bilinear transformation which maps the points z=1, i, -1 onto the points w=i, 0, -i hence find
i) the image of | z | < 1
ii) the invariant points of this transformation.

6. a) State and prove the Orthogonality of the Bessel's function.

8 M

b) Prove that:
$$P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$$
. 8 M