PVP 14
Code: EE4T1

II B.Tech - II Semester - Regular/Supplementary Examinations April 2019

COMPLEX VARIABLES \& SPECIAL FUNCTIONS
 (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1.

a) Find the real and imaginary parts of $\operatorname{Cosh}(x+i y)$.
b) Find all the roots of the equation: $\operatorname{Sin} z=\operatorname{Cosh} 4$.
c) List the C-R equations in polar co-ordinates.
d) State Cauchy's integral formula.
e) Define Complex potential Function.
f) Determine the poles of the function $f(z)=\frac{1-e^{2 z}}{z^{4}}$.
g) Find the poles and residues at each pole of tanhz?
h) Find the image of the infinite strip $0<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$.
i) Find the bilinear transformation which maps the points $(-1,0,1)$ into the points $(0, i, 3 i)$
j) Determine $\frac{d}{d x} J_{0}(x)$.
k) Express the function in Legendre polynomial $5 x^{3}+x$

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Show that the function $f(x, y)=x^{3} y-x y^{3}+x y+x+y$ can be imaginary part of an analytic function $z=x+i y$.
b) Find $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{i}$ g given that $u+v=\frac{\operatorname{Sin} 2 x}{\cosh 2 y-\cos 2 x}$. 8 M
3. a) Evaluate $\int_{c}(x-2 y) d x+\left(y^{2}-x^{2}\right) d y$ Where C is the boundary of the first quadrant of the Circle $x^{2}+y^{2}=4$. 8 M
b) Develop $f(z)=\frac{1+2 z}{z^{2}+z^{3}}$ in a series of positive and negative powers of z. 8 M
4. a) Evaluate $\int_{c} \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ where $\mathrm{C}:|\mathrm{z}|=1$. 8 M
b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{(5-\cos \theta)^{2}}$ using residue theorem. 8 M
5. a) Show that circles are invariant under linear and inversion transformations.
b) Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $w=i, 0,-i$ hence find
i) the image of $|z|<1$
ii) the invariant points of this transformation.
6. a) State and prove the Orthogonality of the Bessel's function. 8 M
b) Prove that: $P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$. 8 M
